Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 16(11): e0259671, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34780518

RESUMO

The effects of TiO2 nanoparticles (nano-TiO2) together with antibiotics leaking into wastewater treatment plants (WWTPs), especially the partial nitrification (PN) process remain unclear. To evaluate the combined impact and mechanisms of nano-TiO2 and antibiotics on PN systems, batch experiments were carried out with six bench-scale sequencing batch reactors. Nano-TiO2 at a low level had minimal effects on the PN system. In combination with tetracycline and erythromycin, the acute impact of antibiotics was enhanced. Both steps of nitrification were retarded due to the decrease of bacterial activity and abundance, while nitrite-oxidizing bacteria were more sensitive to the inhibition than ammonia-oxidizing bacteria. Proteobacteria at the phylum level and Nitrosospira at the genus level remained predominant under single and combined impacts. The flow cytometry analysis showed that nano-TiO2 enhanced the toxicity of antibiotics through increasing cell permeability. Our results can help clarify the risks of nano-TiO2 combined with antibiotics to PN systems and explaining the behavior of nanoparticles in WWTPs.


Assuntos
Antibacterianos/farmacologia , Nanopartículas Metálicas/química , Titânio/química , Titânio/farmacologia , Eritromicina/farmacologia , Nitritos/química , Nitrosomonadaceae/efeitos dos fármacos , Proteobactérias/efeitos dos fármacos , Tetraciclina/farmacologia , Purificação da Água
2.
Environ Microbiol ; 21(4): 1241-1254, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30735001

RESUMO

The nitrification inhibitors (NIs) 3,4-dimethylpyrazole (DMPP) and dicyandiamide (DCD) can effectively reduce N2 O emissions; however, which species are targeted and the effect of these NIs on the microbial nitrifier community is still unclear. Here, we identified the ammonia oxidizing bacteria (AOB) species linked to N2 O emissions and evaluated the effects of urea and urea with DCD and DMPP on the nitrifying community in a 258 day field experiment under sugarcane. Using an amoA AOB amplicon sequencing approach and mining a previous dataset of 16S rRNA sequences, we characterized the most likely N2 O-producing AOB as a Nitrosospira spp. and identified Nitrosospira (AOB), Nitrososphaera (archaeal ammonia oxidizer) and Nitrospira (nitrite-oxidizer) as the most abundant, present nitrifiers. The fertilizer treatments had no effect on the alpha and beta diversities of the AOB communities. Interestingly, we found three clusters of co-varying variables with nitrifier operational taxonomic units (OTUs): the N2 O-producing AOB Nitrosospira with N2 O, NO3 - , NH4 + , water-filled pore space (WFPS) and pH; AOA Nitrososphaera with NO3 - , NH4 + and pH; and AOA Nitrososphaera and NOB Nitrospira with NH4 + , which suggests different drivers. These results support the co-occurrence of non-N2 O-producing Nitrososphaera and Nitrospira in the unfertilized soils and the promotion of N2 O-producing Nitrosospira under urea fertilization. Further, we suggest that DMPP is a more effective NI than DCD in tropical soil under sugarcane.


Assuntos
Archaea/efeitos dos fármacos , Guanidinas/farmacologia , Nitrosomonadaceae/efeitos dos fármacos , Óxido Nitroso/metabolismo , Microbiologia do Solo , Amônia/metabolismo , Archaea/genética , Bactérias/efeitos dos fármacos , Bactérias/genética , Fertilizantes/análise , Nitrificação/efeitos dos fármacos , Nitrosomonadaceae/genética , Oxirredução , Pirazóis/farmacologia , RNA Ribossômico 16S/genética , Solo/química , Clima Tropical
3.
Nitric Oxide ; 75: 8-15, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29408608

RESUMO

The work found that the electron-donating properties of ferrous ions (Fe2+) can be used for the conversion of nitrite (NO2-) into the biofilm-dispersing signal nitric oxide (NO) by a copper(II) complex (CuDTTCT) catalyst, a potentially applicable biofilm control technology for the water industries. The availability of Fe2+ varied depending on the characteristics of the aqueous systems (phosphate- and carbonate-containing nitrifying bacteria growth medium, NBGM and phosphate buffered saline, PBS at pH 6 to 8, to simulate conditions typically present in the water industries) and was found to affect the production of NO from nitrite by CuDTTCT (casted into PVC). Greater amounts of NO were generated from the CuDTTCT-nitrite-Fe2+ systems in PBS compared to those in NBGM, which was associated with the reduced extent of Fe2+-to-Fe3+ autoxidation by the iron-precipitating moieties phosphates and carbonate in the former system. Further, acidic conditions at pH 6.0 were found to favor NO production from the catalytic system in both PBS and NBGM compared to neutral or basic pH (pH 7.0 or 8.0). Lower pH was shown to stabilize Fe2+ and reduce its autoxidation to Fe3+. These findings will be beneficial for the potential implementation of the NO-generating catalytic technology and indeed, a 'non-killing' biofilm dispersal activity of CuDTTCT-nitrite-Fe2+ was observed on nitrifying bacteria biofilms in PBS at pH 6.


Assuntos
Biofilmes/efeitos dos fármacos , Complexos de Coordenação/química , Ferro/química , Óxido Nítrico/química , Substâncias Redutoras/química , Catálise , Cobre/química , Compostos Ferrosos/química , Concentração de Íons de Hidrogênio , Óxido Nítrico/farmacologia , Nitrificação , Nitritos/química , Nitrosomonadaceae/efeitos dos fármacos , Nitrosomonadaceae/fisiologia , Cloreto de Polivinila/química , Abastecimento de Água
4.
FEMS Microbiol Ecol ; 61(2): 305-16, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17573939

RESUMO

Communities of ammonia-oxidizing bacteria (AOB) were characterized in two acidic soil sites experimentally subjected to varying levels of nitrogen and sulphur deposition. The sites were an acidic spruce forest soil in Deepsyke, Southern Scotland, with low background deposition, and a nitrogen-saturated upland grass heath in Pwllpeiran, North Wales. Betaproteobacterial ammonia-oxidizer 16S rRNA and ammonia monooxygenase (amoA) genes were analysed by cloning, sequencing and denaturing gradient gel electrophoresis (DGGE). DGGE profiles of amoA and 16S rRNA gene fragments from Deepsyke soil in 2002 indicated no effect of nitrogen deposition on AOB communities, which contained both Nitrosomonas europaea and Nitrosospira. In 2003, only Nitrosospira could be detected, and no amoA sequences could be retrieved. These results indicate a decrease in the relative abundance of AOB from the year 2002 to 2003 in Deepsyke soil, which may be the result of the exceptionally low rainfall in spring 2003. Nitrosospira-related sequences from Deepsyke soil grouped in all clusters, including cluster 1, which typically contains only sequences from marine environments. In Pwllpeiran soil, 16S rRNA gene libraries were dominated by nonammonia oxidizers and no amoA sequences were detectable. This indicates that autotrophic AOB play only a minor role in these soils even at high nitrogen deposition.


Assuntos
Amônia/metabolismo , Nitrogênio/farmacologia , Nitrosomonadaceae/metabolismo , Microbiologia do Solo , Enxofre/farmacologia , Proteínas de Bactérias/química , Proteínas de Bactérias/classificação , Nitrosomonadaceae/classificação , Nitrosomonadaceae/efeitos dos fármacos , Nitrosomonas europaea/classificação , Nitrosomonas europaea/efeitos dos fármacos , Nitrosomonas europaea/metabolismo , Oxirredução , Oxirredutases/química , Oxirredutases/classificação , Filogenia , Reação em Cadeia da Polimerase , RNA Ribossômico 16S/química , RNA Ribossômico 16S/classificação , Escócia , País de Gales
5.
FEMS Microbiol Ecol ; 52(1): 21-9, 2005 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-16329889

RESUMO

Ammonia oxidation potential, major ammonia oxidizers and occurrence of salt-tolerant nitrifying bacteria were studied in soil samples collected from diverse ecosystems along the northern Negev desert. Great diversity in ammonia oxidation potential was observed among the soil samples, and ammonia oxidizers were the rate-limiting step of nitrification. Denaturing gradient gel electrophoresis and partial 16S rRNA gene sequences indicate that members of the genus Nitrosospira are the major ammonia oxidizers in the natural desert soil samples. Upon enrichment with different salt concentrations, salt-tolerant nitrifying enrichments were established from several soil samples. In two enrichments, nitrification was not inhibited by 400 mM NaCl. Electrophoretic analysis and partial 16S rRNA gene sequences indicate that Nitrosomonas species were dominant in the 400 mM salt enrichment. The results point towards the potential of the desert ecosystem as a source of stress-tolerant nitrifying bacteria or other microorganisms with important properties.


Assuntos
Amônia/análise , Nitrosomonadaceae/fisiologia , Filogenia , Microbiologia do Solo , Solo/análise , Amônia/metabolismo , Sequência de Bases , Análise por Conglomerados , Primers do DNA , Clima Desértico , Eletroforese , Israel , Dados de Sequência Molecular , Nitrosomonadaceae/efeitos dos fármacos , Nitrosomonadaceae/genética , Oxirredução , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Cloreto de Sódio/farmacologia
6.
Appl Environ Microbiol ; 71(3): 1276-82, 2005 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15746329

RESUMO

The effect of short-term ammonia starvation on Nitrosospira briensis was investigated. The ammonia-oxidizing activity was determined in a concentrated cell suspension with a NOx biosensor. The apparent half-saturation constant [Km(app)] value of the NH3 oxidation of N. briensis was 3 microM NH3 for cultures grown both in continuous and batch cultures as determined by a NOx biosensor. Cells grown on the wall of the vessel had a lower Km(app) value of 1.8 microM NH3. Nonstarving cultures of N. briensis showed potential ammonia-oxidizing activities of between 200 to 250 microM N h(-1), and this activity decreased only slowly during starvation up to 10 days. Within 10 min after the addition of fresh NH4+, 100% activity was regained. Parallel with activity measurements, amoA mRNA and 16S rRNA were investigated. No changes were observed in the 16S rRNA, but a relative decrease of amoA mRNA was observed during the starvation period. During resuscitation, an increase in amoA mRNA expression was detected simultaneously. The patterns of the soluble protein fraction of a 2-week-starved culture of N. briensis showed only small differences in comparison to a nonstarved control. From these results we conclude that N. briensis cells remain in a state allowing fast recovery of ammonia-oxidizing activity after addition of NH4+ to a starved culture. Maintaining cells in this kind of active state could be the survival strategy of ammonia-oxidizing bacteria in nature under fluctuating NH4+ availability.


Assuntos
Amônia/metabolismo , Nitrosomonadaceae/genética , Nitrosomonadaceae/metabolismo , RNA Bacteriano/genética , RNA Bacteriano/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Acetileno/farmacologia , Sequência de Bases , Meios de Cultura , DNA Bacteriano/genética , Inibidores Enzimáticos/farmacologia , Genes Bacterianos , Cinética , Nitrosomonadaceae/efeitos dos fármacos , Oxirredução , Oxirredutases/antagonistas & inibidores , Oxirredutases/genética , Oxirredutases/metabolismo , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo
7.
FEMS Microbiol Ecol ; 47(1): 13-8, 2004 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-19712342

RESUMO

Autotrophic ammonia-oxidizing bacteria produce nitrous oxide (N(2)O) as a by-product of nitrification or as an intermediate of nitrifier denitrification. In soil incubations, acetylene (C(2)H(2)) and large partial pressures of oxygen (O(2)) are used to distinguish between these sources. C(2)H(2) inhibits ammonia oxidation and should therefore inhibit N(2)O production by both nitrification and nitrifier denitrification. O(2) suppresses the reduction pathway of nitrifier denitrification. However, doubts concerning the reliability of C(2)H(2) and O(2) as inhibitors have arisen recently. Therefore, in this study we tested the influence of C(2)H(2) and large partial pressures of O(2) alone and in combination on N(2)O production in pure cultures of the ammonia oxidizers Nitrosomonas europaea and Nitrosospira briensis. C(2)H(2) largely inhibited nitrite production in both ammonia oxidizers and N(2)O production by N. europaea. Surprisingly, it did not affect the N(2)O production in N. briensis. The variable response of ammonia oxidizers to C(2)H(2) might have consequences for the use of C(2)H(2) as an inhibitor of nitrification in soils. Different partial pressures of O(2) ranging from less than 10 kPa O(2) to 100 kPa O(2) were tested for their effectiveness in inhibiting N(2)O production via nitrifier denitrification. The partial pressure of 100 kPa O(2) yielded minimal N(2)O production by both ammonia-oxidizing species and seemed to inhibit N(2)O emission from nitrifier denitrification to a large extent. However, a negative effect of 100 kPa O(2) on ammonia oxidation itself could not be excluded. The applicability of both inhibitors in determining N(2)O production pathways in soils is discussed.


Assuntos
Acetileno/farmacologia , Nitrosomonas europaea/metabolismo , Óxido Nitroso/metabolismo , Oxigênio/farmacologia , Amônia/metabolismo , Meios de Cultura , Nitrosomonadaceae/efeitos dos fármacos , Nitrosomonadaceae/crescimento & desenvolvimento , Nitrosomonadaceae/metabolismo , Nitrosomonas europaea/efeitos dos fármacos , Nitrosomonas europaea/crescimento & desenvolvimento , Oxirredução/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...